منابع مشابه
On the tutte polynomial of benzenoid chains
The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.
متن کاملPolynomial Tutte Invariants of Rooted Integral Gain Graphs
We present dichromatic and tree-expansion polynomials of integral gain graphs that underlie the problem of counting lattice points in the complement of an integral affinographic hyperplane arrangement. This is a step towards finding the universal Tutte invariant of rooted integral gain graphs. Mathematics Subject Classifications (2000): Primary 05C22; Secondary 05C15.
متن کاملon the tutte polynomial of benzenoid chains
the tutte polynomial of a graph g, t(g, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. in this paper a simple formula for computing tutte polynomial of a benzenoid chain is presented.
متن کاملThe Tutte polynomial
This is a close approximation to the content of my lecture. After a brief survey of well known properties, I present some new interpretations relating to random graphs, lattice point enumeration, and chip firing games. I then examine complexity issues and concentrate in particular, on the existence of randomized approximation schemes. © 1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 210–...
متن کاملOn the greedoid polynomial for rooted graphs and rooted digraphs
We examine some properties of the 2-variable greedoid polynomial f(G;t, z) when G is the branching greedoid associated to a rooted graph or a rooted directed graph. For rooted digraphs, we show a factoring property of f (G;t ,z) determines whether or not the rooted digraph has a directed cycle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 1999
ISSN: 0373-0956
DOI: 10.5802/aif.1709